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ABSTRACT

We consider infinite dimensional optimization problems involving
entropy-type functionals in the objective function as well as in the
constraints. A duality theory is developed for such problems and
applied to the reliability rate function problem in Information

Theory.

)

Key Words: Optimization in Infinite Dimensional Spaces;

Duality in Convex Optimization; Entropy; Divergence; Information
i Theory; Channel Capacity; Reliability Rate Function; Error

. Exponent Function.
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1. INTRODUCTION

Extrenum problems involving entropny-type functionals appear in
a diversity of apulications. To mention just few: stati .ical
estimation and hypothesis testing (Kullback-Leibler (Ref. 1), Kullback
(Ref. 2), Akaike (Ref. 3)), traffic engineering (Charnes et al. (Ref. 4)),
marketing {(Charnes et al (Ref. 5)), accounting (Charmes and Cooper
(Refs. 6,7)), information theory (Shannon (Ref. 8)).

In the majority of these applications, the extremum problems
involved are studied caly for the case of finite distributions. Extensions
to arbitrary distributions were derived recently by Ben-Tal and Charnes
(Ref. 9). The extremum problem is set up as an infinite dimensional

convex program with linear equality constraints, narmely:

() inf { J f(t) log £(8) dt: J f(t)ai(t)dt = ai i=1,...,m},

g(t)
f€n T T

where D 1is the convex subset of density functions with support T,
and g(+) is a given density in D.

It is shown in Ref. 9 that the dual problem is the unconstrained

finite dimensional concave program:

m
. iElyiai(t)
(B) sup {y 8 - log J glt)e
yER™ T

de}

The dual pair (A)-(B) has a very interesting statistical inter-

. m . .
pretation: let {91}1—1 be paransters of the distribution, estimated

in terms of a sample x = (x ,xn) by

1

=
.,xn) = (ai(xl) oo+ al(xn))

ard let these estimates replace ei in the constraints of (A).
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Consider now the problems of finding the maximum likelihood estimator
n*(x) of the parameter vector w = (Trl,...,ﬂm)t in the exponential

family generated by the (fixed) density a(t), i.e.:

m
) m.a, (t)
£(e]m = g(tyc(me™?

where c{(7) 1is a normalizing constant, i.e.:
m
. I ma (o
-1 i=1
c(m) = J glt)e dt.
T

The likelihood function is

n L 1ma; xy
f(x.|m =(m It
1 ) j=1

a2

g(xj)}'C(n)n e
j

therefore

z"iei (x) ]

hence %-1og(likelihood) = const. + log[;(n)e
the maximum likelihood estimator m"(x) is obtained by solving:
- -1
max {zv.e.(x) -logc (M} =
m i'i
T €R
m
n iZlniai(t)
max ) m.8.(x) - log J g(tle }

TER i=1l T

The latter is precisely the dual problem (B). Thus, for the

exponential family, Statistical Information theory and the Maximum

Likelihood approach are dual principles,

Many problems in information theory, howevzr, cannot be - T
stated just with linear constraints as in problem (A), they contain . f?}
also (nonlinear) entropy type inequality constraints. It is the purpose ;:iEG
of this paper to derive duality results for such problems and to “ ;;

demonstrate their power and elegance in treating such problems.
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As a motivation we begin by describing the channel capacity

problem of Information Theory. Consider a communication channel
described by an input alphabet A = {1,...,n}, an output alphabet

B={1,...,m} and by a probability transition matrix

0 = {Q(k]j)} , where Q(k|j) is the probability of receiving the
output letter k € B when input letter j € A was transmitted.

The capacity of the channel is defined as:

A ¢ 0 ) 0ix] )
C = max (I(p,Q) = max z ) ij(klj)log o (1)
P P =] 4=
o€ peF ot 3 ! p0(k|2)
2=1
where n
P" & (per™ p. >0 Vi: Y p. =1} (2)

is the set of all probability distributions on the channel input,
and I(p,Q) is known as the average mutual information between

the channel input and channel output. Channel capacity is the basic

concept of Shannon's mathematical theory of communication {(later L

called Information theory). For more details on the notion of

capacity and its significance,theAreader is referred to Shannon -t
(Ref. 8), Gallager (Ref. 10), Jelinek (Ref. 11).

Roughly speaking, the basic theorem of information theory, the
so-called "noisy channel coding theorem”, states that if the channel
has capacity C, it is possible to transmit over this channel N
messages, of sufficiently large lengtn, at rate R<C and still
be able to decode them with a probability of error as small as
desired. Upper bound on the probability of error is given in terms
of an exponential decreasing function of the so-called reliability

rate function E(R). In the classical proof of the coding theorem,

e

P L -




the function E(R) is derived via a sequence of mathematical mani-
pulations, see e.g., Gallager (Ref. 12) and Csiszar (Ref. 13).
Blanut (Ref. 14), has enlightened many basic problems of coding theory

by defining E(R) as a saddle function problem, involving the Kullback-

Leibler relative entropy functional) namely, for a given channel

matrix P(k]j):

m n .
max_ min 2 z ij(k'j)loq Qi&lll

E(R) )
pEP" 0EO(R) k=1 j=1 Plki3)

(3)

where

Q(R)

{Q: I(p,9) € R}, R a positive scalar.

Starting from this definition, Blahut (Ref. l4) provedg that
E(R) can be expressed by the conventional parametric form originally

proposed by Gallager (Ref. 12) namely,

1

m n
E(R) = max max _{-§R-log } { § p‘P(klj)l+6 }l+6

n } (4)
520 pEW k=1 j=1

A new proof of this result is given here in Section 3, via the duality
theory developed in Section 2. The duality framework can be applied
to a variety of other extremum problems of information theory, (see
e.g., Blahut (Ref. 14), Table I, p. 417).

In particular, more than one entropy-type constraint can be

easily dealt with, and the general (not necessarily discrete) distribu-

tion case can be considered.

Bttt ntednadendainal
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2. DUALITY THEORY FOR LINEAR AND ENTROFPY CONSTRAINED PROGRAMS

Let dt be a o-finite additive measure defined on a d-field
141
of the subsets of a measurable space T, and let L~ = L (T,dt) be

the usual Lebesgue space of measurable real valued functions x on

T so that

I 8 f|x(t)[dt <w
T

Let D = {x € Ll:x(t) 2 O(a.e), J x{t)dt = 1} be the convex subset
of Ll which is the set ofTall probability densities x(¢) on T.

Consider the infinite dimensional optimization problem:

. x(t)
(P) inf f x(t) log co(t) dt
T
subject to
f A
J ai(t)x(t)dt 2 bi i€1={1,...,m} (5)
T
x(t) A
[ x(t) log TS < ey k € K={1,...,p} (6)
T k

x(t) ED <t

where S T >R, k € {0} UK are given summable positive functions;

a: T +TR are given continuous functions; ard (b, } {

itier’ }

®xTkex

are given real numnbers.

Here and hencefortn, 0 log 0 = lim+ t log £t = 0. A dual
t->0

representation of problem (P) will be derived via lagranjian duality.

Recall that for a convex optimization protlem:
(A) inf {f(x): g(x}) ¢ 0 x € C c X}
m , -
where f: C »™R, g: C » IR are convex functions defined on a convex

subset C of a linear space X, the Lagrangiin for problem (A) is




defined as L: C xm‘: +IR given by:

Lix,y) = f(x) + ytg(x).

The dual objective function is

h(y) = inf L(x,y)

x€C

and then the dual problem (B) associated with (A) is defined as:
(B) sup hiy).

y20
The main result concerning the dual pair (A) and (B) is the existence
of a saddle point (x*,y') for (A) or equivalently, the validity of

a strong duality result:

. ~ *)
inf(A) = max(B) .

Under the familiar Slater regularity condition:

(s) 3Ix €C: g(x) <0

the strong duality relation is guaranteed. More precisely we have:
(see e.g., Rockafellar (Refs. 15,16), Laurent (Ref. 17), Ponstein

(Ref. 18))

Theorenm 2.1 Assume that inf(A) < = and that the regqularity

assumption (S) holds then

inf(A) = max(B).

Remark 2.1 The regularity condition (S) is, in fact, relateld

to the notion of stably set problem. More details are aviilable

(*) We follow the convention of writing min" ("max") if the infinum
(supremum) is attained.
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in Rockafellar (R2f. 13) and Laureat (Ref. 17) (espacially Theocaa

7.6.1, p. 473).

Rzmark 2.2 A result of the tyve of Theor~m 1 has typically a
syroeteic version, i.e., 1€ (B) is assumed stably set then

min{A) = s:p(8), (s2e Rockafellac (Ref. 15), Theor2m 4, p. 179).

W2 now retarn to the primal "entropy pecoblea”™ (P). The
d=rivation of its dual objective function is based on the following

simple resualt,

Lerma 2.1 Let s(t) be a given positive sumrable function:

[ s(t)dt = § < » |
T

Then _ .;
min x(t}lo x(2) dt = - logs T
s(t) S
XEIJT

wh2re the oprimal procadbility deasity x*(t) = Eéﬁl [a.e]).

Proof: Define hi{t) = 5 tnan h{t) € ©, hence by Thesram 3.1,

p. 14, Kulibask (Ref. 2), we hawve:

inf J x(t) log X&) gp = g ]
x €D ‘
T

e

wrere the infimam is attaired for x*(v) = niv) =

. s
N N

Then using the identity:

)
J f(t)log ey dr = J f{t)log g%ﬁl-— log J s{t;dr
T

nie)

- 4

T T -

the r=31lt follows. o ilﬁfﬁ
8
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The Lagrangian for problem (P) is L: D xR _xIK >R

x(t) .
_ Zyiai(t) + z)\klog e }x(t)de

t t
L(x,y,A\) =by-e A +J {105 e
o i€1 kEX k

T
(7)

and thus the dual problem (D) associated with (P) is defined as:

sup{inf L{x,y,A\): y € m‘:, A€ RE_: ).
x€D

The ncxt result shows that the dual problem (D) can be expressed simply

as a finite dimensional concave program involving only nonnegative

constraints.

Theorem 2.2 The dual problem of (P) is given by:

. Liate (o) +ytace))
(D) sup {ytb- X e-plog J co(t)ep de}
YER, T
AERY
where:

t t
A(t) = (al(t),...,am(t)) ; B(t) = (Bl(t),...,Bp(t))

with
c, (t)
= \ K = . pl.
B (t) = log - © x € (1 p}
o
Proof: The Lagrangian dofined in (7) can be written after sone

algebraic manipulations as:

Lix,y,2) = -y b-A%e+

- —
x
o
s
o]
«Q
1




b ck(t)
Tren, defining p=1 + 2 )k ard B (t) = log ——-—7-, a little
ko1 k co(t)

algebra shows that the dual objective function can be expressed as:

t t .
hiy,A) =y b - A"e +p inf J x(t) log S 1.

x€D Liats (0 vytace))
Co(t)e

1 t
{AB(t)+y A(t)}
New, applying Lemma 2.1 with s(t) = co(t)ep we get

the desired result.

Duality results for the pair of problems (P)-(D) will now follow
by setting problem (P) as a convex program of the type (A) and then

apolying Theorem 2.1.

Theorem 2.3
(a) If (P) is feasible then inf(P) is attained and
min(P) = sup(D).
Moreover, if there exists x €D satisfying the constraints
(5), (6) strictly, thea sup(D) is attained and

min(P) = max(D).

(b) If x* €D solves (P) and y* EIRT, A * €IR$ solves (D) then:

* *
L ey fare))
. co(t)eo
x*(0) = e laae]
={X TB(u)+y CA() !}
{ c (t)eo dt
o
T
Pronf: In order to apply Theorem 2.1, we nend to set problom (P) 1n

the format of the convex program (A).  Thus, consider the linear

op=rator A Ll > Rm Jivon by

10
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al(t)x(t)dt

a (t)yx(t)de
m

H—

\

and for k € {0} JK, define the integral functionals

( J x{t) log Ei%%T dt if x€D 3
T k
I Ik(x) =
® otherwise.
\

Then problem (P) can be written as a convex optimization problem.

(Pp) inf{Io(x): Ax 3 b, Ik(x) S e k € K, x € D}.

Note that (P} corresponds to (A) with

b-Ax \
. Il(§)-el&
X:=L", C:=D, f(x):=Io(x) and g(x):= . 1

I (x)-e
and then the results follow from Theorem 2.1. 1In fact, since the

dual (D), given in Theorem 2.2, has only nonnegative constraints
(y 20, A 2 0), it satisfies the strongest constraint, implying
by Remark 2.2 lack of duality gapvand attainment of the primal
infimum. Thus the first part of conclusion (a) follows. The
second part follows directly from Thecrem 2.1 itself. Moreover,
part (a) implies the existence of a saddle point

D
(x*(t),y*,k*) €D x]RT xIR,, so

min Lix,y*,A") = Lix*,y*, ")

x €D

and the expression for x* given in (b) follows from the last part

of Lemma 2.1.

11




3. AN APPLICATION IN INHORMATION THEORY

In this section we apply the duality relation for problem (P)

to treat in a unified simple way the reliability rate function problem

described in the introduction. While our results developed in Section

2 are applicable to the case of general probability distributions, e

we restrict ourselves here to the case of finite discrete probability
distributions, since they include most of the interesting problems
appearing in information theory. We begin with some further notations
and definitions, following closely the terminology of (Ref. 14).

The relative entropy or discrimination between two discrete

(finite) distributions p, q playing a fundamental role in statistical

information theory 1is a function J: " x1P" + R defined by:

Py
pklog _— (8)
1 k

Jip,q) =

It e~D

k
It is well known that J is convex in each of its arguments, non-
negative, and equal to zero if and only if Py = Q- Yk, (see e.q.,
Ref.2).

Similarly, one defines the average discrimination by:

l.
k!
Qf ?} (9)

m
lejQ(k j)log bl

n

JQ,p) = ¥
j=1 k=

where p, 9, P are as defined in the Introduction. -

In the rest of this paper we simplify the notations: probability

transition matrix like P(klj) are dernoted ij and summation -}

indices are dropped.

An error exponent function is defin=d in Blahut (1974] as the

following (single) entropy constrained program:

(E)  e(r) = min{J(q,q,): q € P(n)} .

12
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(q en": J(q.ql) s} .

r 1is a given positive scalar and q,. q, are givan distributions in
P". Problem (E) just defined is a special case of problem (P), des-
cribed in Section 2 with: I = @ (i.e., no linear constraints), K = {1}
and with co(t), cl(t) corresponding here to the discrete finite dis-
tributions qz, ql respectively. Morsovser, since problem (E)
consists of minimizing continumnus function over the comgpaztt set IP(r),
the minimun is attained; we know also from Theorem 2.2 that the dual
problem (H) corresponding to (E) involves only nonnegative constraints,
hence satisfying the strongest constraint qualifications; we get

according to Theorem 2.2 and Theorem 2.3, by setting

p=1+ll=1+5 and el=r’
Theorem 3.1 A dual representation of (B) is the program
8
—x \1+§
(H) elr) = max {-Sr - log/2q1+5 ql+5 ) } .

n * N N
Morecover, if q' €F solvas (E) and & 3 O solves (H) then

§ 1
1+5 1+§
o I Yk
T
qIIg-ql+§
1k 2k
k a]

We recover here, a result ootained in ((Ref.l14), Theorzam 7).
We now derive the dual regresentation of E(R) by reference
to the error expon2nt furction efr).

Recalling the definition of the reliability rate function given in

13

-
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the Introduction (see eq. (3)) and using our notations we have:

E(R) = max min J(Q,P) (10)
pE€EFP CEQ(R)

where

QRr) = {Q: I(p,Q) s R}.

A useful identity for the average mutual information is

g
L I(p,Q)

= minn E(Q.q) (11)
qEP
where
m n
_ . Kl s
J,9:= § § p.otk]j)leg KELDL
k=1 j=1 ) I

this can be verified by observing that the minimum is achieved for

s =)
qk = - pJQkJ'
]
Using (l1), problem (10) can be reformulated as:

E(R) = max  min {I(Q,P): min J(Q.q) € R} . (12)
pEP QEQ(R) q€P

Now it is an easy exercise to show that any optimization problem

of the form min{f(x): min g(x,y) € r} is equivalent to

X ]
zi; (£(x): g(x,y) ¢ r} hence (12) becomes
E(R) = max min min {J(Q,P): J(Q,q) ¢ R} . (13) e
P g9 Q SR
The inrer minimum in (13) is of the form of el(r) in problem (E), f'ﬁj
and is appropriately denoted by e(R,q). Then by Theorem 3.1, a
dual representation of it is easily shown to be: :

e NN
PP RN D) i,

i 3
e(R,q) = max {-5RrR - log{i Zp plfﬁ q1+5 f -
620 kj)k) k

Substituting the latter representation in (13), we got

14




E(R) = max min max {g{q,8) - &R} (15)
p a %0
where
4(q,5) 1= ~log {1 zijk. q } (16)

\kj

We shall prove that the "min-max" appearing in (15) can be recversed.

Before, we need an auxiliary result.

Lemma 3.1 The function g(q,5) defined in (16) is

(a) concave in 6 for any q € r"

(b) convex in gq for any §6320.

Proof: (a) It is well known that the Lagrangian dual function is
always concave in the dual variables, hence (a) follows.
(b) Let f: R >R be a convex decreasing function, and let

: R" >R be a concave function, then it is easy to verify that
9 Y

hix) = f(g(x)) 1is convex. 5
. z 1+6 :
Take f(t) = -log t (convex decreasing), g(q) = a, q, with
3§ k
1+6

a := ijij > 0 (concave for 6 > 0) then clearly
i

glq,8) = (1+8)f(gi{g)) and (b) is proved.

o]
The min-max theorem related to (15) now follows.
Theorem 3.1 Let K(g,8) = glg,8) - 8R
min max K(qg,§) = max min K{q,$§) (1L7)

q 620 §20 gq

Proof: By Lemma 3.1, K(q,8) is a convex-concave saddle function
for every q € Pn and every § 2 0. By a result of Rockafeller

(Ref. 19), a sufficient condition for the validity of (17) for a

15
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general convex-concave saddle function is:

*‘5 20 such that
o

dK n
l 60 T3 (q,8) 20 (qeP, 6§ > 0),.

This 1s certainly satisfied if:
dK
3 q, 38>0 such that s (q,8) <0,

i.e.,

3q, 36 > 0: g'(q,8) = a‘-’d— g(q,8) <R . (18)
Since R > 0, it suffices to prove that:

inf g'(q,8) € 0 . (19)
§20

e NS
But g'(q,8) 1is a derivative of a concave function and thus is

decreasing, hence

inf g'{q,$8) = lim g'(q,8) . (20)
§20 S+

Moreover, the gradient inequality for the concave function glg,-*)

implies:

0 = glq,0) ¢ glq,8) - 8g'(q,$)

- 1
hence: L
g'(q,5) s g_(qéﬂ o
Thus, to prove (19) it siffices to show that ?” 9
lim g9lq,8) <0
)
54
Indeed, straightforward —omputation shows that 1lim 9!q.5) =0 . ’ k-"'
§-mo - 1
(o}

16
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The last theorem permits us to write E(R) (see, eq. (15)) as:
E(R) = max max min K(q,§)
p s20 g
However, the next result, will show that the inner minimum can be
computed, and thus E(R) can be expressed simply as a double maximum BRIy

problem.

Lerumma 3.2
—_— a

— l+a
max log (in+a y.) = log Zyl+a (¢ > 0)
X€EX *

where

n
X={x€R": x 0 1§ x =1}

Proof: From Holder inequality we get - N

(3% )"™ (3 ) (1)

Taking log of both expressions and using the fact that Exk =1, SR
we get:
o l+a
+ 1
sup qu(zx}]; * yk) N log kam
x€X .
l+a "
1 th i ttained for x* = i
and e sup is a ine x, = Z e
Yx
o
Now, since '
min K{(q,8) = -8R - max g(§,q), .
q q 1
. . 1+§ . :
using Lemma 3.2 with X :=q and vy, := Zp.P . . a final expression
k' 7k S IS
for the reliability rate function E(R) is:
1
. s y1+6
3
E(R) = max = max {—SR - log Z !Ep.Pifa f } (21)
pEP 620 k3R
17
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This result coincides with Theorem 18 given in (Ref. 14)

The second term in (21) is the so~called Gallager function.

The dual representation (21) is useful for deriving efficient

computational algorithms, see e.g., (Ref, 20).




Aol G e v o 4

Ty I

T . B PPy re—e T Y

REFERENCES

(1]

(2]

(3]

[4]

(5]

[6]

(7]

8]

9]

{10]

[11)

(12}

(13]

Kullback, S., Leibler, R.A., "On Information and Sufficicncy”,
Ann. Math. Stat., Vol. 22, pp. 79-86, 1951.

Kullback, S., Information Theory and Statistics, John Wiley
& Sons, Inc., New York, 1999.

Akaike, H., "Information Theory and an Extension of the Maximum
Likelihood Principle", Proc. of the 2nd Int. Symp. on Information
Theory, 1972.

Charnes, A., Raike, W.M., and Bettinger, C.0., "An Extremal and
Information Theoretic Characterization of some Interzonal
Transfers,” Socio-Economic Planning Sciences, Vol. 6, pp. 531-
537, 1972,

Charmes, A., Cooper, W.W., and Learner, D.B., "Constrained
Information Theoretic Characterizations in Consumer Purchase
Behavior", Journal of the Operational Research Society, pp. 833-
840, 1978.

Charnes, A., Cooper, W.W., "An Extremal Principle for Accounting
Balance of a Resource Value Transfer Economy: Existence, Unique-
ness and Computatious", Acad. Naz. Lincei, Series VIII, Vol.
LVI, pp. 556-561, 1974.

Charnes, A. and Cooper, W.W., "“Constrained Kullback-Leibler
Estimation; Generalized Cobb-Douglas Balance, and Unconstrained
Convex Programming", Acad. Naz. Lincei, Series VIII, Vol. LVIII,
pp.- 568-576, 1975.

Shannon, C.E., "A Mathematical Theory of Communication,” Bell
Syst. Tech. Journal, Vol. 27, pp. 379-423, pp. 623-656, 1948.

Ben-Tal, A., Charnes, A., "A Dual Optimization Framework for
some Problems of Information Theory and Statistics", Prohlems
of Control and Information Theory, Vol. 8, pp. 387-401, 1979,

Gallager, R.G., Information Theory and Reliable Communication, J,.
Wiley and Sons, Inc., New York, 1968.

Jelinek, F., Probabilistic Information Theory, McGraw-Hill,
New York, 1968,

Gallager, R.G., "A Simple Derivation of the Coding Theoram and
Some Applications", IEEE Trans. Information Theory, Vol., IT-11,
pp. 3-18, 1965.

Csiszar, I. ard Korner, J., Information Theory: Coding Theorems
for Discrete Memoryless Systems, Academic, New York, 1981.

19

L N TP S o« .o . e
R e N TR PR S PP L R O oLt
e e FRS v et

- - » ~ - - - ‘.'-.Q-'-..hl.." - > .t - - ...-' P
LI ST P W WU O s i o W R W WAER P W R R W W I i I RS W WP ST SRR

o

ey

«
Pl

»‘C‘.‘T'.".v':"f?
4

-

o
)
2
s
A

,
. ot
e d__aalal

. . . LI
L e -

y
e
Lah

.
d

2

i
L:




TSy v ¥

REFERENCES (cont'd)

(14} Blahut, R.E., "On Hypothesis Testing and Information Theory",
IEEE Trans, Information Theory, Vol. IT-20, pp. 405-417, 1974.

[15] Rockafellar, R.T., ‘Duality and Stability in Extremum Problems

186, 1976.

[16] Rockafellar, R.T., "Conjugate Duality and Optimization", -
Regional Conference Series in Applied Mathematics, SIAM -
No. 16, 1974.

(17] Laurent, P.J., Optimisation et Approximation", Hermann, Paris,
1972.

[18] Ponstein, J., Approaches to the Theory of Optimization,
Cambridge University Press, 1980.

(19] Rockafellar, R.T., "Minimax Theorems and Conjugate Saddle
Functions”, Math. Scand., Vol. 14, pp. 151-173, 1964.

[20] Arimoto, S., "Computation of Random Coding Exponent Functions", -
IEEE Trans. Information Theory, Vol. IT-22, pp. 665-671, 1976.

ke hh

20




-Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2, GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
ccs 7 /58 230
4. TITLE (end Subtitie) S. TYPE OF REPORT & PERIOD COVERED

The Role of Duality in Optimization Problems
Involving Entropy Functionals, with Applica-

tions to Information Theory 6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) %. CONTRACT OR GRANT NUMBER(e)
A. Ben-Tal, M, Teboulle, A, Charnes NO0014-82-K-0295

N00014~-81-C-0236

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. P
Center for Cybernetic Studies A

The University of Texas at Austin
Austin, Texas 78712

OGRAM ELEMENT, PROJECT, TASK
EA & W UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research (Code 434) September 1984
Washington, D,.C. 13 zuémesn OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(if dilferent from Controlling Ollice) 18. SECURITY CLASS. (of thie report)

Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. OISTRIBUTION STATEMENT (of this Report)

This document has been approved for public release and sale; its
distribution 1s unlimited,

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Repart)

18. SUPPLEMENTARY NOTES

te 4 A

19. KEY WORODS (Continue on reveree side if necessary and identify by block number)

Optimization in Infinite Dimensional Spaces; Duality in Convex Optimization;
" Entropy; divergence; Information Theory; Channel Capacity; Reliability
Rate Function; Error Exponent Function, <=

20. ABSTRACT (Continue on reveree alde if necessary and identify by slock number)

e consider infinite dimensional optimization problems involving o
entropy-type functionals in the objective function as well as in
the constraints, A duality theory is developed for such problems -
and applied to the reliability rate function problem in Information
Theory. - - . 2, R .

0D ':2:"" 1473 coiTion oF 1 noV 6813 OBsOLETE

$/N 0102-014- 6601 | Unclassified Bk

SECURITY CLASSIFICATION OF THiS PAGE (im Deata Bntered)

T S . me e e J T T S T SO v e PSP
o et T et e T A . RPN P LA . . .

o I T . . et et et - PR
. D TR PP A N T I S T Rt St SRC YRR S S S
PO, A A A Y Y VAL AL Uy Ty PRI T DR R L L A IR L) 'i'-' Cod i MEE Y M

ORI e VSR TP PR VRS T }
e o fe tete o ite e 0. e







